
In! J. Hwr .Wass Trunsfer. Vol. 9, pp. 663-670. Pergamon Press 1966. Printed in Great Britain 

CONVECTION ENFORCED BY SURFACE AND 

TIDAL WAVES” 

MICHAEL BENTWICH 
Technion-Israel Institute of Technology, Haifa, Israel 

(Received 13 April 1965 and in revised form 15 September 1965) 

Abstract-The time-dependent diffusion equation is solved for an infinite layer of fluid in which there are 
tidal or surface waves. The hydrodynamical disturbances are found to produce perturbations in the other- 
wise time-independent temperature distribution. The perturbations are found to propagate, while retaining 
their form or else getting dispersed, and in general be similar to the hydrodynamic waves. Propagation of 
the heat associated with the perturbation in the temperature distribution is then shown to give rise to 

convection. 

a, 

f” 
‘i K, 
Sj, kj, 

9, 
h, 
L 
m, 
QV 
Ra, 
IT; 
T+, T-7 

f;, 4, 
w,, YJ, 

(x3 Y). 

NOMENCLATURE 

amplitude of free surface elevation, 

1; 
velocity of wave-propagation, It - 1 ; 
nth perturbation of q, dimension- 
less ; 
function, dimensionless ; 
function, Fourier transform of F ; 
functions, dimensionless ; 
functions associated with the jth 
derivatives of G, K ; 
gravitational acceleration, It - 2 ; 
thickness of fluid layer, 1; 
characteristic length, 1; 
wave number, l- ’ ; 
quantity of heat ; 
Rayleigh number, dimensionless ; 
temperature ; 
temperature of top and bottom 
surfaces ; 
time, t ; 
velocity components, It - ’ ; 
nth perturbation of (u, v), dimension- 
less ; 
Cartesian co-ordinates, 1. 

*This paper was prepared while the author was at the 
Department of Thermal Sciences, State University of New 
York at Stony Brook. 
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Greek symbols 
6 PIIn, Kronecker delta ; 

6 size of perturbation ; 

6 thermal (or mass) diffusivity, 12t - 1 ; 

cp9 potential function, 12t-’ ; 

;3:, 

elevation of free surface, 1; 
nth perturbation of T. 

INTRODUCTION 

THE CONCEPTO~ forced convection is normally 
associated with streaming through a duct or past 
an obstacle. In such mechanisms the cold (or 
solute absorbing) fluid at the vicinity of the heat 
(or mass) sources is being continually re- 
plenished. Less attention has been paid to con- 
vection mechanisms in which the mean velocity 
of the fluid is small and convection results from 
a wave travelling through the essentially stag- 
nant fluid. It is shown here that according to the 
accepted incompressible fluid dynamics and 
diffusion laws this form of transfer can exist. The 
hydrodynamical wave gives rise to a perturba- 
tion in the otherwise time independent tempera- 
ture (or concentration) distribution. The pertur- 
bation propagates as fast as the travelling 
mechanical waves. It is also similar to these in 
various other senses. This phenomenon will be 
therefore referred to as “heat wave”. Further- 
more, it is treated here by extending the well 
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known perturbation type of analysis of hydro- 

dynamic waves. 
Attention is focused on heat waves in the 

infinite layer of fluid shown in Fig. 1. When 
undisturbed its depth h is uniform. The tempera- 

ture of the solid bottom and the possibly dis- 
torted free surface, T- and T+ are also taken to 
be uniform. The temperature (or concentration) 

distribution is no longer linear with the height 
when surface or tidal waves are present. This 

deviation is partly due to the geometrical dis- 
tortion of the otherwise uniform layer and partly 

FIG. 1. Schematic diagram of the wave in a layer of fluid. 

due to convection. In the case of surface waves 
it is possible to make a clear distinction between 

the two effects. Convection, in such cases, is 
thus shown to be produced by horizontal drift 
of isothermal fluid particles. Again, drift is 

shown to be closely linked with convection 
which is produced by tidal waves. It is significant 
that, in theory, so long as the above-mentioned 

conditions hold no convection takes place 
when the motion of the fluid is uniform and 

parallel. 
The analysis presented is based on the assump- 

tion that the flow influences the heat diffusion 
process without being affected by the resulting 
temperature variations. Thus, in this work buoy- 
ancy forces, together with other less important 
effects are neglected. Dimensional analysis shows 

that the relative strength of the buoyancy forces 
is measured by Ra, the Rayleigh number for the 
fluid layer under discussion. Therefore, strictly 

speaking, this analysis is applicable only to the 
cases in which Ra is considerably smaller than 
the pressure and inertia forces associated w-ith 

the travelling waves. Since these are O(F) where 

t: is the perturbation used in the analysis, this 
treatise holds only in the cases in which the rc- 

striction Ra B 1 is satisfied. In practice. not 

many such cases are encountered. However. it is 
well known that convection currents do not 

dominate the flow and temperature fields unless 
T+ is smaller than T_ and Ra is O(10”). Therc- 
fore. as long as Ra is smaller and the fluid IS 

cooled rather than heated below buoyancy forces 
are unlikely to break the wave structure repre- 
sented by this analysis. Consequently the quail- 

tative conclusions about the general features k\f 
heat waves are probably not limited to the in- 
frequent cases in which Ra is extremely small. 

One instance in which the phenomenon undri 

discussion could be of practical interest is in 
studies of the weather. These show that the 

climate of continents like Europe is affected by 
ocean currents like the Gulf-stream. Thus II is 
conceivable that the much faster tidal waves 
transport across similarly large distances smaller, 
but perhaps not insignilicant. quantities of heat. 
The theoretical aspects of this work are also of 
interest. The mathematical problems solved here 
are similar to these encountered by investigators 
of diffusion in unsteady boundary-layer 01 
turbulent flow, where the velocity field is alsit 
time dependent. Not many solutions of such 
problems are available. Nor is the author awai~c 

of a systematic approach to these. 

GENERAL PERTURBATIOh AhAI,YSIS 

In the problems under consideration the 
governing diffusion equation 

is solved together with the boundary conditions 
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T = T+ at Y = r(x,t), (2) and substituting into equation (2’) from (4) and 

T = T_ at y=-h. (3) 
(5). The resulting boundary conditions imposed 
on 8, are therefore 

doW,t) = T+ (20) 

d,(x,O,t) = -L 2 (x,O,t) E,(x,t) (2,) 

Here T(x,y,t) is the temperature (or the concen- 
tration of the solute) and rc is the diffusivity of the 
fluid. Conventional Cartesian co-ordinates (x,y) 
are used,here and V2 is the Laplacian operator 
in these. The velocity components are (u, u), u 
denotes the elevation of the free surface above its 
undisturbed position y = 0 (see Fig. l), and 
t is the time. 

As mentioned, the variables U, u and q are of 
O(E). Though different physical significance is 
attached to the parameter E in the cases of sur- 
face and tidal waves, in both cases E Q 1. The 
dependent variable can therefore be expanded 
thus : 

02) 

where c is the velocity of wave propagation and 
L is a characteristic length. Since T does not 
vanish when E is zero, or when there are no waves, 
this variable is assumed to be expandable in the 
following form : 

T = f &(x,y,t) E”. 
n=o 

and so on. Every term in the expansion (5) is 
therefore governed by a determinate second- 
order differential system. These can be solved 
consecutively for n = 0, 1 . . . providing the 
U,, V, and E, which appear in (1,) and (2,) are 
known. The solution for 8, is obviously 

80 = T_ + (T+ - T_ )(y + h)/h (6) 

Since when E = 0 the temperature is given by 
this term only, it represents the steady distribu- 
tion which is perturbed when waves are present. 

CONVECTION BY SURFACE WAVES 

(5) In such case u and u are the x and y derivatives 
of the wave potential [l, 21 

When the expansions (4) and (5) are inserted into 
equations (1) and (3) and like powers of E are 
equated, the following relationships are obtained 

a -- 
at 

#V%, 

n-1 

= -_c CC U~_i~ + ~-i~ 
) 

(1,) 

i=O 

&(x, - h,t) = 6,,T_ (3”) 

where 6,, is the Kronecker delta. The boundary 
condition for the exposed surface is derived 
by expanding T(x,q,t) in Taylor series, as shown 

0~1 

T(x,q,t) = c $ (x,0,$ = T+ (2’) 
j=O _ 

q=m-‘c E 

i 

cash [m(y + h)] 

sinh (mh) 
sin [m(x - ct)] 

+ E2 2. cash [2m(y + h)] 
2 tanh2 (mh) sinh’ (2mh) 

sin [2m(x - ct)] . . . 
1 

(7) 

The elevation of the free surface is 

+ ’ 
21 2 + cash (2mh) 

2 tanh2 (mh) sinh (2mh) 

cos [2m(x - ct)] . . 1 (8) 

The characteristic length L is taken to be m- ’ 
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which is (271)) ’ times the wave length. From the 
last expression one finds that EK 1 is very nearly 
equal to the amplitude of the disturbance of the 
free surface, so that I: is a measure of its slope. 

The solution for 0, is in this case governed by 

3 coth (mh) sinh [2m(y + h)] 

4’ sinh2 (mh) sinh (2mh) 

cos [2m(x - C?)] 
i 

(10) 

a 

(-- 1 & 
liv 0, Function Hj for j > 2 will not be evaluated with- 

in the framework of this treatise because the 
T+ - T_ sinh [m(y + /I)] 

-(‘-h 
mechanical disturbance which is 0(t3) propa- 

sinh (mh) gates. at a velocity different than C. Therefore. 

sin [m(x - ct)] (1,) though the method employed here is in principle 
applicable the algebra involved in the solutions 

Q,(x,O,t) = - 
T+ - T- for Oj becomes prohibitively cumbersome for 

(mh) 
cos [4x - 41 (2,) j > 2, 

0,(x,-h,t) = 0 (3,) 

where the right-hand sides of equations (1 t) and 
(2,) are evaluated by making use of (6), (7) and 
(8). One can easily verify that the solution for 0, 
is 

e 
1 

= _ T+ - T- sinh [m(y + h)] 
mh sinh (mh) 

cos [m(x - ct)]. (9) 

When use is made of equations (6) to (9), equa- 
tions (12) and (2J are found to read 

a ( > -- 
at 

K v= t12 

T+ - T_ 3 coth’ (mh) sinh [2m(y + h)] 
h sinh2 (2mh) 

sin [2m(x - ct)], (1 2) 

e,(dM = 
1 T+ - T- 2 + cash (2mhj 

-- 
2 mh tanh2 (mh) sinh (2mh) 

cos [2m(x - ctj] 

+ 
T, - T_ 

(mhj coth (mh) cos’ [m(x - ct)]. 6%) 

In this solution (cXlj/c?t) is equal to the right- 
hand side of equations ( lj) and V28, vanishes, 
for j = 0, 1. 2. Physically this means that the 
temperature of every fluid particle is fixed and 
that equal amounts of heat are conducted into 
and out of every unit volume. The processes of 
diffusion and conductions thus do not interact. 
This is not, by any means, an unknown phe- 
nomenon. Distributions which have the same 
property could be produced by letting the flow 
between the isothermal surfaces y = U and 
y = -h be parallel and uniform. Such cast is 
also treated by O’Brien [3]. 

In view of the last remarks and the form of the 
solution, T satisfies the Laplace equation in 
(XJ) as well as (x’,y) where I’ = s - (‘1. The 
conditions (2,) and (3,) forj = 0. 1.2 . can also 
be expressed in terms of x’. The solution for T 
is therefore the steady-stutr distribution in a 
solid strip bounded by a wavy (stationary !) top 
surface and a plane bottom. It is to be expected 
that the increase in the area of the top surface 
due to its distortion increases the mean flux 
across such solid strip of length (2?c,‘m). This 
increase is represented by the first term in the 
curly bracket of equation (10). The contribution 
of this term to the solution for temperature dis- 
tribution T(x,y,t) in the wave-carrying fluid, is 

These together with (32) yield 

T+ - T_ 1 
6, = mh 

y + h 
z coth (mh) h 

therefore recognized as the result of the geo- 
metrical distortion of the layer rather than a 
convective effect. 

The possibilities of producmg an overall 
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x-directed heat (or mass) transfer will now be 
considered, bearing in mind that each of the two 
modes of transfer do not interact. Since the im- 
pressed gradient is essentially vertical the mean 
axial conduction is expected to vanish. Indeed, 
the time integral of (W/dx),=,,,,,, over a period 
2n/mc is zero. The mean convective transfer 
similarly vanishes, because fluid particles retain 
their temperature while tracing closed contours 
around points which are fixed in space. Con- 
versely convection is bound to be observed with 
wave motion in which the mean positions of the 
isothermal particles transverse axial distances. 
Such, so called, drift is associated with the 
infinite train of waves under consideration, but is 
of an order that is neglected within the frame- 
work of this analysis [4,5]. It is shown in the next 
paragraph that drift and hence convection can be 
produced by wave-system of O(E). 

Consider the following generalization of the 
expressions for q and 4 

a, 

cp = ca s f(m) co& Cmb + Ml 
sinh (mh) 

-a: 

sin [m(x - ct)] dm + O(E’), (11) 

positive, i.e. when the travelling wave is asso- 
ciated with a localized “swell” of the otherwise 
uniform layer, the propagating disturbance pro- 
duces a drift. For hydrodynamic wave of the form 
(11) the temperature distribution is 

T = T- -t (T+ - T_) y+h 

0, 

a -- 
h s f(m) sinh Cmol + 41 

sinh (mh) 
--a? 

cos [m(x - ct)] dm . (14) 
1 

It is important to note that the expressions in 
equations (1 l), (12) and (14) are linear superposi- 
tions of solutions of the form (7), (8) and (9). 
Therefore in the generalized wave system too 
fluid particles are isothermal and the arguments 
about the effect of this property on the convec- 
tion hold. Thus with T = 8, as a reference 
temperature the heat stored in a wave of breadth 
1 is shown in the Appendix to be given by : 

Q = ;(T+ - T_); ss P’(5) 
0 0 

v] = a -[f(m) cos [m(x - ct)] dm + O(E~) (12) + F(-C)Iln{coth($$ -x0 

Here (am) is of O(E) and for the sake of brevity 
and simplicty terms of O(E’) are neglected. At 
time t = 0 the following holds 

q(x,O) = a F(x) = a 7 f(m) cos (mx) dm (13) 

This relationship could (but need not necessarily) 
be one of the initial conditions. In any case it is 
assumed here that F(x) is continuous, even in x 
and decreases more rapidly than /x/-i for large 
/xl. Under some circumstances (which will be 
discussed later) c is independent of m so that at 
any time t > 0, r] is aF(x - ct). The deflection of 
the free surface and the associated velocity field 
therefore vanish far from the moving section 
x = ct. In the event that F(x) is everywhere 

where Y is the specific heat. This is obtained by 
setting in equation (14) t = 0 and integrating the 
time-dependent term with respect to y, m and 
x. In view of the assumed properties of F(x), Q 
is finite and non-zero. The form of the solution 
(14) indicates that the time-dependent compo- 
nent of T and the associated heat Q, propagates 
with the velocity c. Therefore though Q is pro- 
portional to (a/h), which is small, the rate of heat 
flow CQ could under some circumstances be 
significant. 

This section is concluded with some remarks 
about the validity and applicability of the fore- 
going arguments and results. The velocity of 
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surface waves is related to the gravitational 
acceleration g by 

c2 = ym-’ tanh (mh). (16) 

Therefore, when 111 is very small c is m-inde- 

pendent, as assumed, and is equal to the maxi- 

mum attainable value (g/z)“. Therefore when the 
causing disturbance is such that the rrth deriva- 

tives of F(x), F’“‘(x) are of 0(/r-“). f’(m) is very 

small beyond the range -e/r- 1 < m c rh _ ’ 
where e < 1, and the resulting (hydrodynamic 

and) heat wave propagates with that velocity. 

However. if the surface wave is produced by a 

more abrupt or sharp disturbance, F(c) is not 
smooth, and the major contributions to time 

dependent components of equations ( 11). (12) 
and (13) are due to integration with respect to 
m beyond the above-mentioned range. The 

(hydrodynamical and) heat wave gets dispersed, 
and a significant part of the heat Q propagates 

with a velocity slower than (gh)+. Consequently 
the resulting rate of heat flow is lower than 
(glr)‘Q. A more exact expression for it can be 

obtained by multiplying the integrand of equa- 

tion (13) by c(m), setting t = 0 and carrying out 
the integration with respect to y. ~1 and Y as 

before. 

HEAT CARRIED BY TIDAL WAVES 

In this case the depth of the layer 11 is taken to 
be the characteristic length L. The parameter 1: 

is the ratio of the amplitude of the free surface 
deflection to h. The non-dimensional compo- 

nents of velocity and the deflection are [ 11 

U, = -[G(s - et) - K(s + 41, 

Vi = (y + h)[G’(x - ct) - K’(?i + ct,], 

E, = -[G(x - ct) + K(x + ct)]. 

The functions G and K are solutions of the one- 
dimensional wave equation which represent 
incoming and outgoing waves. The expressions 
for U i, Vi and E 1, are inserted in equations (1 i). 
(2,) and (3,). The non-homogeneous part of 
these turn out to be functions of y_ (X + ct) and 
(.Y - cr). This leads one to seek a solution which 

is expressible in terms of these three variables. 

Since, as will be shown. such solution exists, it 
may be concluded that like surface waves, in- 
coming and outgoing tidal waves are accom- 
panied by heat waves. 

The solution is assumed to have the following 
form : 

where the bracketed superscript ,j imply that 
G(z) and K(z) are differentiated with respect to 

z..j times. In this expansion lij and gj are functions 
of _r only, which vanish identically for j ec 0. 
By substituting from equation (17) into the 
governing equation ( 1 I] one gets 

= c(y + h) hc ‘( --CT”’ + Iv”). (IX) 

The boundary conditions (7,) and (3, ) reduce 
to 

and 

gj( - 11) = lij( -Ii) = 0, 119) 

gj(o) = kj(0) = ijio (301 

Since G and K are finite and continuous but 
otherwise arbitrary their derivatives are, in 

general, mutually independent. Equation ( IX) is 
therefore satisfied by requiring that the coeffi- 
cients of Go’ and K’j’ for ,j I= 0, I, 2 should 
vanish. For j = 0 this requirement yields the 
following differential equations 

By utilizing the boundary conditions (19) and 
(20) these can be readily integrated. For j > 0 
this requirement yields non-homogeneous 
second order equations governing gi and kj. in 
which the non-homogeneous parts contain 
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gs and ks of lower indices. By using the boundary 
conditions the coefficients in equation (17) can 
therefore be evaluated consecutively for j = 0, 
1, 2, 3. The resulting solution for 0i is found to 
be 

theoretically conclusive, the manner in which 
such waves could be generated has yet to be 
studied. 
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81 = (T+ - If-) 1 Jq(G+K) 
_ (Y + N3 - h2(Y + h) (G(z) + K(2)) 

6h 

- [3 (,y + h)5 - 10h2 (y ‘+ h)3 

+ 7h4 (y + h)] (Gt3’ + KC3’). . . (21) 

Like the time-dependent term of equation (14) 
the solution (21) represents progressing heat 
waves. However, unlike surface wave tidal and 
associated heat waves do not get dispersed. 
Therefore when G(x) or K(x) are [like F(x)] 
everywhere positive and vanish at infinity the 
tidal waves carry non-zero amount of heat, with 
the velocity of propagation [which happens to 
be (gh)* again]. Since the form of solution (21) 
indicates that the two modes of transfer interact, 
it is impossible to recognize one of these as the 
sole cause of overall transfer. It is nevertheless 
noted that the assumed positiveness of G and K 
imply the existence of “swell” and therefore 
drift. It is assumed that in the case of tidal waves 
too, this drift plays a role in inducing convection. 

CONCLUDING REMARKS 

The diffusion equation is solved for a layer of 
fluid which is bounded on the top by a time 
dependent free surface. Through the layer either 
surface or tidal waves propagate. Availability 
of non-trivial solution is taken here to imply that 
heat waves, which have certain properties, can 
exist. It is, however, borne in mind that in solving 
the problems initial conditions were altogether 
ignored. The resulting temperature (or concen- 
tration) distribution T(x,y,t) can be regarded as 
a solution of a well-posed problem with T(x,y,O) 
as the initial condition. It is found that such 
condition is rather artificial. Hence though the 
result about the existence of heat waves ic 

1. 

2. 

3. 

4. 

5. 
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APPENDIX 

Derivation ofEquation (15) 

One sets t = 0 in equation (14) and integrates 
its time dependent term over an infinitely long 
rectangular volume of height h and breadth 
Thus one gets 

cc a, 

Q = I@+ - T-) ss f(m) 
cash (mh) - 1 

m sinh (mh) 
--a) -oi, 

which yields 

cos (mx) dm dx (A 

a, cc CL’ 

Q = &(T+ - T-) 

--a, -a, --a, 
x cosh(mh) - 1 

m sinh (mh) 
{cos [m(x + 01 

+ cos [m(x - 01) d[ dm dx (A.2) 

where use is made of equation (13), the properties 
of Fourier Transforms and the well-known 
trigonometrical relationships. It is then noted 
that the integral I which is given by 

a) 

I= s cos (mz) 
cash (mh) - 1 dm 

m sinh (mh) 
-* 

OZ 

= 
s 

eimz cash (mh) - 1 

m sinh (mh) 
dm (A.3) 

-a) 
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can be evaluated by completing it to a contour times (27ci) is given by 
integral around a semi-circular domain. When 
this semi-circle lies in the upper and lower half 
of the complex plane for positive and negative 

1 = 4 2 (2j + I)- 1 lexp [_ lln;h])Zj+ I 
j=O 

7 respectively, the integral along the semi- 
circular arc becomes vanishingly small for 

= in [coth (zn;h)]. (A.41 

large radius. The product of the sum of the Thus by combining and rearranging equations 
residues for the poles on the imaginary axis (A.3), (A.4) and (A.2) equation (15) is obtained. 

RCumGL’tquation de la diffusion avec intervention du temps est resolue pour une couche infinie de 
fluide dans laquelle existe des ondes de mar&e ou de surface. On trouve que les perturbations hydro- 
dynamiques modifient la distribution de temperature qui, sans cela, ne dependraient pas du temps. Les 
perturbations se propagent en gardant leur forme ou en se dispersant et sont en general semblables aux 
ondes hydrodynamiques. La propagation de la chaleur associee aux perturbations de la distribution de 

temperature donne lieu alors a de la convection. 

Zusammenfassung-Fiir eme unendlich ausgedehnte Flussigkeitsschicht mit Gezeiten~ oder Ober- 
fllchenwellen ist die zeitabhangige Diffusionsgleichung gel&t. Es zeigt sich, dass die hydrodynamischen 
Unregelmassigkeiten eine StSrung in der sonst zeitunabhlngigen Temperaturverteilung hervorrufen. Im 
Allgemeinen, hydrodynamischen Wellen Ihnlich, breiten sich die Storungen unter Beibehaltung ihrer 
Form aus. Die mit der Stiirung des Temperaturfeldes verbundene Ausbreitung der Warme verursacht 

die Konvektion. 

AnnoTsqHsr-Peurerro yparnrernie HecTaquonaprroi Wri+#yaMn AJIFI 6ecKoHesHoro CJIOII 
?KuHKOCTU IIPU HaJXU~UM IlPuJluBHbIX UJIU IIOBePXHOCTHbIX BOJIH. YCTaliOBJleKO, YTO lWJ.(pO- 

AUHaMUseCKUe BO8M)'rrleHUH BbI8bIBaH)T BO8MJ'LQeHUe CTaI(UOHaPHE.IX PaClIpeAeJIeHUtt TeMl-fe- 

PaTypbI. HaigeHo, 9TO 3TU BOaMJ'IQeHUH PaCIIpOCTpaHFIIOTCE, COXpaHHH CBOIO $tOpMy UJIU 

Rncneprupyn, HO B o6~em,OCTarnTCR ~OJ&O~H~MU I'U~PO~UHaMU~eCKUM BOJIHaM. 

3aTeiu noKaaari0, q~o pacnpocrpaueriue Tenza, cB~aannoe c r3oaMyruernfaniu B Temre- 
PaTYPHOM paCIIpe~eJIeHUU,BbI8bIBaeT KOHBeKqUlO. 


